
Terminating tableau calculi for modal logic K
with global counting operators

Mohammad Khodadadi, Renate A. Schmidt, Dmitry Tishkovsky

School of Computer Science, The University of Manchester, United Kingdom

Micha l Zawidzki

Department of Logic, University of Lodz, Poland
School of Computer Science, The University of Manchester, United Kingdom

Abstract

This paper presents the first systematic treatment of tableau calculi for modal logic
K with global counting operators. Using a recently introduced tableau synthesis
framework we establish two terminating tableau calculi for the logic. Whereas the
first calculus is a prefix tableau calculus, the second is a refinement that internalises
the semantics of the logic without using nominals. We prove the finite model property
for the logic and show that adding the unrestricted blocking mechanism does not break
soundness and completeness of the calculi and ensures termination in both cases. We
have successfully implemented the prefix tableau calculus in the MetTeL2 tableau
prover generation platform.

Keywords: modal logic, hybrid logic, tableau, counting operators, finite model
property.

1 Introduction

Counting modalities were first introduced by Fine in [8] under the name of
graded modalities. They allowed expressing a number of successors of a partic-
ular world, at which a certain formula holds. In particular, a formula 3=n>
expresses the fact that the current world has exactly n successors. Some further
developments of the theory of graded modalities can be found in [4,5,7]. Van
der Hoek and de Rijke [18] established graded modal logics as a modal tool
for investigating first-order counting quantifiers and introduced the notion of
propositional logic with counting (PLC) as a name for the logic S5 with graded
modalities (see also [3]).

With the aim of improving the expressivity of modal logics Areces et al. [2]
introduced modal logics with counting operators (MLC). Global counting
operators E>n, E<n and E=n were added to a modal language with the ordinary
modalities. Global counting operators increase the expressive power of a logic
by allowing nominals, the universal modality, and counting the cardinality of

2 Terminating tableau calculi for modal logic K with global counting operators

a domain (by a formula E=n>). It also enables the formalisation of natural
language queries that involve numbers.

In this paper we provide tableau-based decision procedure for modal logic K
with global counting operators, referred to as K(E)n. Having all the properties
mentioned in the forgoing paragraph, K(E)n is a powerful extension of the or-
dinary modal logic K. Introducing counting operators not only allows encoding
various interesting problems within the language of the logic (e.g., finite tiling
problems) but covers also the expressive power of many modal logic (graded
modal logics, most hybrid logics). However, a detailed study of the expressivity
of K(E)n is beyond the scope of this paper.

In the existing literature several approaches for deciding modal/description
logics with counting operators can be found. [2] describes a decision procedure
for modal logics with counting operators that exploits the translation function
from the modal counting language to the hybrid language with the universal
modality H(A). In [19] a sound and complete axiomatisation for K(E)n is pro-
vided, which gives a basis for a standard Hilbert-style calculus. More direct,
tableau-based decision procedures for MLC were established in the field of
description logics where counting operators are known under the guise of car-
dinality constraints. Sound, complete and terminating tableau-calculi for these
logics can be found in [10,11,6]. These calculi, in general, do not differ in the
rules for cardinalities, however, they utilise different blocking mechanisms for
ensuring termination, such as pairwise blocking or pattern-based blocking.

We exploit the framework from [15] to synthesise a sound, complete and
terminating prefix tableau calculus for K(E)n. We also provide a refinement
of this calculus consisting in internalising the semantics of the logic within
the language of the logic. This is the first calculus that deals with global
counting operators in purely modal terms. Even though in [11] an internalised
tableau calculus for a logic with cardinality constraints is presented, the tableau
rules use syntactic entities of a separate sort, namely nominals, to encode the
semantics within the language of the logic, whereas we only exploit global
counting operators to dispense with meta-linguistic expressions like M, x |= ϕ
or R(x, y). Termination for our calculus is obtained by using the unrestricted
blocking rule (ub) and by the fact that the logic K(E)n has the finite model
property, which is proven in this paper. We show that although the (ub)-rule
is generic, our calculus still remains complexity-optimal.

We also describe a successful implementation of the calculus using the
MetTeL2 tableau prover generator [17,1].

The paper is structured according to the steps in the tableau synthesis
approach (see [14] for an overview of the framework). The first step is the
specification of the syntax and semantics of the logic K(E)n. This involves
defining an object language and a many-sorted first-order meta-language for
K(E)n. This is done in Section 2. Section 3 describes the next step, which is
the synthesis of a tableau calculus from the specification of K(E)n. Sections 4
and 5 perform the checks needed to establish soundness and completeness of
the calculus in the framework. To obtain termination a proof of the finite

Khodadadi, Schmidt, Tishkovsky, Zawidzki 3

model property for K(E)n is given. In Sections 6 and 7 we focus on possible
refinements of the calculus, one of which is obtained by internalising the se-
mantics. Section 8 briefly describes a MetTeL2-implementation of the prefix
tableau calculus. In Section 9 we discuss related work on tableau approaches
for reasoning with counting operators. Conclusions and prospective work are
presented in Section 10.

2 The logic K(E)n
First, we need to define the object language of K(E)n. Let prop = {p1, p2, . . .}
be a countable set of propositional letters. We define a set form of formulas
of K(E)n as follows:

form ::= p | ¬ϕ | ϕ ∧ ψ | 3ϕ | E>nϕ, (K(E)n)

where p ∈ prop, ϕ ∈ form, n ∈ N. We also give explicit definitions of other
Boolean connectives and modal operators, since they can serve as rewrite rules
in the tableau calculi.

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) ϕ→ ψ := ¬(ϕ ∧ ¬ψ) 2ϕ := ¬3¬ϕ

E<nϕ := ¬E>n−1ϕ E=nϕ := E>n−1ϕ ∧ ¬E>nϕ

A model for K(E)n is a triple 〈W,R, V 〉 where W is a non-empty set, R is
a binary relation on W , V : prop → P(W) is a valuation function assigning
to each p ∈ prop a set of worlds w ∈ W in which p holds. Given a model
〈W,R, V 〉 and w ∈W , the semantics for K(En) is defined as follows:

M, w |= p

M, w |= ¬ϕ
M, w |= ϕ ∧ ψ
M, w |= 3ϕ

M, w |= E>nϕ

iff

iff

iff

iff

iff

w ∈ V (p), p ∈ prop

M, w 6|= ϕ

M, w |= ϕ and M, w |= ψ

there is a v such that wRv and M, v |= ϕ

Card({w |M, w |= ϕ}) > n,

(1)

Card(A) denotes the cardinality of the set A.
The meta-language of the tableau synthesis framework to specify the seman-

tics of K(E)n is a many-sorted first-order language. Following [15] henceforth
we denote it by FO(K(E)n). A word of explanation needs to be devoted to
the notion of sort. Sorts of a particular language divide expressions of the lan-
guage into distinct sets. In the case of modal logics, we can identify the sort
of a particular expression ϕ with the arity of first-order predicates resulting
from the standard translation applied to ϕ. This means that nominals would
have sort 0 as they translate to constants (nullary predicates), propositional
variables would have sort 1 (as they become unary predicates after transla-
tion). Roles in description logics or programs in PDL would have sort 2 (since
their first-order logic equivalents are binary relations). For the logic K(E)n we
need only the sort 1 for formulas (as neither nominals nor role expressions are

4 Terminating tableau calculi for modal logic K with global counting operators

Sb : x ≈ x x ≈ y → y ≈ x x ≈ y ∧ y ≈ z → x ≈ z
(x ≈ y ∧ ν(p, x))→ ν(p, y) (x ≈ y ∧R(x, z))→ R(y, z)
(x ≈ y ∧R(z, x))→ R(z, y) x ≈ y → f(p, x) ≈ f(p, y)

Figure 1: Semantic specification of background theory Sb for K(E)n

S0 : ∀x(ν(¬ϕ, x) ≡ ¬ν(ϕ, x))
∀x(ν(ϕ ∧ ψ, x) ≡ ν(ϕ, x) ∧ ν(ψ, x))
∀x(ν(3ϕ, x) ≡ ∃z(R(x, y) ∧ ν(ϕ, y)))
∀x(ν(E>nϕ, x) ≡ ∃y1 . . .∃yn+1(

∧
0<i≤n+1 ν(ϕ, yi) ∧

∧
0<i<j≤n+1(yi 6≈ yj)))

Figure 2: Semantic specification of connectives S0 for K(E)n

present in the language). The sorts of the meta-language FO(K(E)n) are then
the sort 1 for formulas of K(E)n and the sort 2 as the domain sort. Expressions
of sort 2 relate to the elements of the first-order domain (under a particular
valuation). FO(K(E)n) as a first-order language is equipped with the usual log-
ical constants and expressions. Furthermore, it contains the following symbols
as first-order equivalents for K(E)n-expressions:

(i) functional symbols obtained from the connectives of K(E)n: unary func-
tional symbols ¬, 3, E>n (sort 1 −→ 1), and binary functional symbol ∨
(sort 1, 1 −→ 1);

(ii) a constant binary predicate symbol R (sort (2, 2));

(iii) the equality symbol ≈ (sort (2, 2));

(iv) an interpretation predicate symbol ν (sort (1, 2)).

In the semantic specification K(E)n-formulas (of sort 1) are treated as
FO(K(E)n)-terms. The ν predicate can be viewed as representing the |= rela-
tion, this means the formula ν(ϕ, x) expresses that M, x |= ϕ.

The foregoing instruments are sufficient to give a full semantic specification
of K(E)n in FO(K(E)n). We can look upon the semantic specification of a
certain logic as a set of axioms for a class of first-order structures where each
connective from the logic is unambiguously defined (see [15]). It consists of two
parts: the background theory (Sb) and the definitions of the connectives (S0).
The background theory provides a frame characterisation for the considered
logic. In our case it only contains equality axioms, since for us the base logic is
modal logic K for arbitrary frames. The background theory conditions are given
in the usual manner, in a universally quantified form. Obtaining tableau rules
for the background theory involves eliminating quantifiers using Skolemisation.
In the presentation of the background theory in Fig. 1 quantifiers have already
been eliminated.

The FO(K(E)n)-definitions for the connectives are easily obtained from (1)
by replacing M, x |= ϕ by ν(ϕ, x) and meta-linguistic connectives by
FO(K(E)n)-connectives, which are shown in Fig. 2. All formulae are uni-
versally quantified. In order to obtain tableau rules for the connectives, we
divide S0 into two disjoint sets of formulas (S0

+ and S0
−) and write them in

implicational form as given in Fig. 3. Obtaining S0
− involves taking the contra-

Khodadadi, Schmidt, Tishkovsky, Zawidzki 5

S0
+ : ν(¬ϕ, x)→ ¬ν(ϕ, x)

ν(ϕ ∧ ψ, x)→ ν(ϕ, x) ∧ ν(ϕ, x)
ν(3ϕ, x)→ (R(x, f(ϕ, x)) ∧ ν(ϕ, f(ϕ, x)))
ν(E>nϕ, x)→ (

∧
0<i≤n+1 ν(ϕ, fi(ϕ, x)) ∧

∧
0<i<j≤n+1(fi(ϕ, x) 6≈ fj(ϕ, x)))

S0
− : ¬ν(¬ϕ, x)→ ν(ϕ, x)
¬ν(ϕ ∧ ψ, x)→ (¬ν(ϕ, x) ∨ ¬ν(ψ, x))
¬ν(3ϕ, x)→ (¬R(x, y) ∨ ¬ν(ϕ, y))
¬ν(E>nϕ, x)→ (

∨
0<i≤n+1 ¬ν(ϕ, yi) ∨

∨
0<i<j≤n+1(yi ≈ yj))

Figure 3: Sets S0
+ and S0

− of Skolemised rules for connectives

Rules for the connectives:

(¬)
ν(¬ϕ, x)

¬ν(ϕ, x)
(¬¬)

¬ν(¬ϕ, x)

ν(ϕ, x)
(∧)

ν(ϕ ∧ ψ, x)

ν(ϕ, x), ν(ψ, x)
(¬∧)

¬ν(ϕ ∧ ψ, x)

¬ν(ϕ, x) | ¬ν(ψ, x)

(3)
ν(3ϕ, x)

R(x, f(3ϕ, x)), ν(ϕ, f(3ϕ, x))
(¬3)

¬ν(3ϕ, x), y ≈ y
¬R(x, y) | ¬ν(ϕ, y)

(E>n)
ν(E>nϕ, x)

ν(ϕ, f1(E>nϕ, x), · · · , ν(ϕ, fn+1(E>nϕ, x)) ,
0<i<j≤n+1

fi(E>nϕ, x) 6≈ fj(E>nϕ, x)

(¬E>n)
¬ν(E>nϕ, x), y1 ≈ y1, . . . , yn+1 ≈ yn+1

¬ν(ϕ, y1) | · · · | ¬ν(ϕ, yn+1) |
0<i<j≤n+1

(yi ≈ yj)

Rules for equality:

ν(ϕ, x)

x ≈ x
x ≈ y
y ≈ x

x ≈ x, y ≈ y, z ≈ z
x 6≈ y | y 6≈ z | x ≈ z

x ≈ y,R(x, z)

R(y, z)

x ≈ y,R(z, x)

R(z, y)

x ≈ y, ν(ϕ, x)

ν(ϕ, y)

x ≈ y
f(ϕ, x) ≈ f(ϕ, y)

Closure rules:

ν(ϕ, x),¬ν(ϕ, x)

⊥
R(x, y),¬R(x, y)

⊥
x ≈ y, x 6≈ y

⊥

Figure 4: The rules of TK(E)n

positives of the right-to-left implications of the formulae in S0, turning them
into prenex normal form and eliminating quantifiers via Skolemisation. The
specification in Fig. 3 is normalised as defined in [15]. Note that the rule for
E>n in S0 is in fact a scheme with n as a parameter. It follows that it gener-
ates an infinite set Ξ of actual E>n formulae, in principle causing an infinite
blow-up of S0. However, Ξ is recursively enumerable so it can be turned into
one tableau rule for E>n.

3 The tableau calculus TK(E)n

The tableau calculus synthesised from the semantic specification provided in
the previous section in Figs. 1 and 3 is given in Fig. 4. We refer to it as TK(E)n .

Intuitively, an expression of the form ν(ϕ, x) means that a formula ϕ holds
in a world x, and ¬ν(ϕ, x) means the contrary. If a rule is a multi-conclusion

6 Terminating tableau calculi for modal logic K with global counting operators

rule, we enumerate in the denominator all conclusions using commas. If rule is
branching, we write in the denominator all alternative conclusions, separating
them with | signs. Given Γ, the input set of formulas, we start the derivation
putting in the initial node of the tableau all formulas from the set {ν(ϕ, x) |
ϕ ∈ Γ} where x is a fresh constant of the domain sort.

The tableau rules for the Boolean connectives are quite straightforward.
However, two different negation signs occur in the rule (¬), the one in the
premise denoting K(E)n-negation, and the one occurring in the conclusion de-
noting FO(K(E)n)-negation.

In the positive rules for 3 and E>n after eliminating existential quantifiers,
instead of introducing a fresh constant, a Skolem term of the form f(ϕ, x) is
used. The advantage of this approach is fewer rule applications during the
derivation. If, for example, at a certain point in a derivation we obtain the
formula x ≈ f(ϕ, x), by the appropriate equality rules we also automatically
obtain x ≈ f(ϕ, f(ϕ, x)), whereas this would not be possible if we use fresh
constants.

In this version of the tableau calculus the (¬3) rule is a branching rule but
in Section 6 we prove that it is possible to turn the ¬R(x, y) conclusion into a
premise and thus decrease branching. The occurrence of the y ≈ y formula in
the (¬3) rule explicitly ensures that the rule is applied only to the worlds that
occur in the current branch (and to them only).

The (E>n) rule reflects the semantics of the global counting operator. It
is generic, since applied to E>nϕ, it produces n + 1 new, distinct worlds in
which ϕ holds. The intuitive meaning of (¬E>n) is as follows. Since it is not
the case that there are more than n worlds in which ϕ holds, there are at most
n worlds in which ϕ holds. So, for each n+ 1-tuple of worlds that have already
appeared in the branch either some of them do not satisfy ϕ or some of them
are equal. Again, we use y ≈ y formulas to ensure the rule is applied only to
domain terms occurring in the current branch. It follows that (¬E>n) is not
applicable until at least n+1 worlds occur in the branch. We show in Section 6,
the rule (¬E>n), contrary to the rule (¬3), is not refinable by turning some of
its conclusions to premises.

The first three rules for equality express the fact that it is an equivalence
relation. Note that the synthesis of the reflexivity rule departs from the normal
scheme for formulas in the background theory. The reason is that formulas
x ≈ x express occurrences of a world x in a branch. If we left the premise of
this rule empty, it would allow for the unconstrained creation of new worlds in
a branch, which could affect applications of the (¬3) and (¬E>n) rules. The
remaining four rules state congruence of ≈ with respect to ν and R predicates
and Skolem functions.

The closure rules are self-evident and require no explanation.

4 Soundness and completeness of TK(E)n

In this section we derive soundness and completeness of TK(E)n , by using results
established in [15]. The appendix gives an independent proof of constructive

Khodadadi, Schmidt, Tishkovsky, Zawidzki 7

completeness, and thus completeness, of TK(E)n .
In general, a tableau calculus T is sound iff for each satisfiable input set of

formulas Γ each tableau T (Γ) is open, i.e., there exists a fully expanded branch
in which no closure rule was applied. A tableau calculus is called complete iff
for each unsatisfiable input set of formulas Γ there exists a closed tableau, i.e.
a tableau where a closure rule was applied in each branch.

Since each rule of the calculus preserves satisfiability, which can be proven
by easy verification, we obtain:

Theorem 4.1 The tableau calculus TK(E)n is sound.

In [15] three conditions for the well-definedness of the semantic specification
were formulated and proven to be sufficient for completeness of a synthesised
calculus. We show that these conditions are satisfied by the semantic specifi-
cation from Figs. 1 and 3 and, therefore, that TK(E)n is complete.

A semantic specification S is well-defined if it is normalised and satisfies
the following conditions [15]:

(wd1) all first-order models characterized by S are also models for S0 ∪ Sb;
(wd2) the relation ≺ induced by S is a well-founded ordering on expressions

of the object language;

(wd3) given a formula ϕ, its decomposition by a suitable S-rule should logically
imply the decomposition of ϕ by appropriately instantiated suitable
S0 ∪ Sb-rule in the class of models for S0 ∪ Sb.

Conditions (wd1) and (wd3) are straightforwardly satisfied because S = S0 ∪
Sb. The ordering imposed by S is a direct subexpression ordering on K(E)n-
expressions:

ϕ ≺ ¬ϕ, ϕ ≺ ϕ ∧ ψ, ¬ϕ ≺ ¬(ϕ ∧ ψ), ψ ≺ ϕ ∧ ψ, ¬ψ ≺ ¬(ϕ ∧ ψ),

ϕ ≺ 3ϕ, ¬ϕ ≺ ¬3ϕ, ϕ ≺ E>nϕ, ¬ϕ ≺ ¬E>nϕ
(2)

so is well-founded and thus satisfies (wd2). Then it follows from [15] that:

Theorem 4.2 TK(E)n is complete.

5 Termination of the calculus

Due to the presence of global operators the calculus TK(E)n can generate infinite
derivations for a satisfiable input set of formulas. A good example of such
input is the formula E=0(¬3p). No such problem occurs if the input set is
unsatisfiable. The logic K(E)n is embeddable into two-variable fragment of first
order logic with counting quantifiers and is therefore compact. It means that
if an input is unsatisfiable any TK(E)n -derivation eventually closes all branches.
However, the presence of E>n-operators, which are universal modalities with
numerical restrictions, can interfere with termination if a particular input set
of formulas is satisfiable.

Let ≤B be an order of occurrences of expressions in a branch B and let
[x]≈ = {y | x ≈ y ∈ B}. The unrestricted blocking mechanism consists of the

8 Terminating tableau calculi for modal logic K with global counting operators

following rule and two strategy conditions added to the calculus:

(ub)
x ≈ x, y ≈ y
x ≈ y | x 6≈ y

;

(c1) The (ub)-rule should be applied exhaustively in a branch B before each
application of the (E>n) and (3)-rules;

(c2) If E>n- or 3-formula ϕ occurs in x1, . . . , xn ∈ [x]≈, then the (E>n) rule
and (3) rule, respectively, are only applied to the least element in [x]≈
with respect to ≤B.

Here, we assume that an input set of formulas Γ is finite. As a consequence
of conditions (c1) and (c2) we obtain an easy observation that for each x
occurring in B the (E>n) and (3)-rules can be applied to elements of [x]≈ only
finitely many times, subject to the number of distinct E>n and 3-formulas in Γ.

It follows that a fully expanded, open T (ub)
K(E)n

-tableau branch B is finite iff M(B)

is finite. M(B) is the model induced by any fully expanded, open branch B. A
formal definition is given in the Appendix.

Now we formulate a stronger result (cf. [16, Lemma 13]) that links arbitrary

models and T (ub)
K(E)n

-tableau for a satisfiable set of input formulas Γ:

Proposition 5.1 Let Γ be any set of K(E)n-formulas. Suppose that N =

〈U,S,Z〉 is a model for Γ. Then, there exists a branch B in T (ub)
K(E)n

-tableau

for Γ such that Card(U) ≥ Card(B), where Card(B) = Card({[x]≈ | x ≈ x ∈ B}).

Proposition 5.1 states that if an input set Γ has a finite model then any T (ub)
K(E)n

-

tableau derivation will be terminating. We say that a tableau calculus T is
terminating (for satisfiability) iff for every finite set of formulas Γ every closed
tableau T (Γ) is finite and every open tableau T (Γ) has a finite open branch. To

ensure termination for T (ub)
K(E)n

it suffices therefore to establish the finite model

property for K(E)n, which we do next.

Theorem 5.2 (Finite Model Property) The logic K(E)n has the effective
finite model property with the bounding function µ = 2Card({Sub(ϕ)})+log(n+1) for
any given input formula ϕ, where Sub(ϕ) is the set of all subformulas of ϕ and
n = max{m : E>mψ ∈ Sub(ϕ)}, where n is coded in binary, i.e., whenever ϕ
has a model, it also has a model of the size not exceeding 2Card({Sub(ϕ)})+log(n+1).

As a consequence of Proposition 5.1, Theorem 5.2 and the fact that each

rule of T (ub)
K(E)n

is finitely branching we get:

Theorem 5.3 T (ub)
K(E)n

is terminating.

We also have:

Theorem 5.4 The logic K(E)n is NexpTime-complete.

Membership of K(E)n in NexpTime follows from Theorem 5.2 (see also [13]).
Hardness follows from the fact that it is possible to encode a finite tiling problem
within K(E)n (see [9]).

Khodadadi, Schmidt, Tishkovsky, Zawidzki 9

To provide a complexity-optimal derivation strategy for T (ub)
K(E)n

we formulate

the following condition:

(op) Expand a branch of a T (ub)
K(E)n

-tableau until the number of equivalence

classes of worlds in B exceeds the bound from Theorem 5.2. Then stop.

Complexity-optimality of any T (ub)
K(E)n

-derivation using this strategy is a sim-

ple consequence of Proposition 5.1 and Theorems 5.2 and 5.4.

6 Rule refinement of TK(E)n

In [15] cases are presented where the rules of synthesised tableau calculi can
be refined. Sometimes we can refine a calculus by decreasing the branching
factor of particular rules, ipso facto reducing size of a tableau. In order to
do that, we turn some conclusions of a branching rule into its premises and
inverting negation in front of them. More precisely, let β be a tableau rule
X0/X1 | · · · | Xn and Xj = {χ1, . . . , χm}. Refinements of the rule β with

respect to its j-th branch are the rules βjk for k = 1, . . . ,m defined by

βjk =
X0, ∼χk

X1 | · · · | Xj−1 | Xj+1 | · · · | Xn
.

Here, ∼ϕ = ψ if ϕ = ¬ψ, and ∼ϕ = ¬ϕ otherwise. A refinement T R of a given
calculus T is obtained by replacing a rule β with its refinements βj1, . . . , β

j
m.

Notwithstanding the conceptual simplicity of the foregoing method, not ev-
ery branching rule can be refined without loosing completeness for the whole
calculus. Furthermore, it might occur that even the same branching rule be-
haves differently in different tableau calculi allowing for refinement in one case
but not in another.

It is straightforward that refinements of a rule are derivable in any given
calculus. Hence, every derivation step in the refined calculus can be simulated
in the original calculus. To obtain the converse and, thus, equivalence of the
refined and original calculi we scrutinise the notion of admissibility of the orig-
inal rule in the refined calculus. Hence, we need to provide the condition that
would help to decide whether a rule β is admissible in a calculus T R. In [15]
we can find such a condition:

Theorem 6.1 ([15]) Let B is an arbitrary open and fully expanded branch
in a T R-tableau. Let F = {ϕ1, . . . , ϕl} be a set of all K(E)n-formulas
from B reflected in M(B). Then the branch B is reflected in M(B) pro-
vided the following condition (†) is satisfied: If X0(ϕi1 , . . . , ϕik) ∈ B then
M(B) |= Xm(ϕi1 , . . . , ϕik), for some m ∈ {1, . . . , n}.

The notions of reflecting a branch by a model and constructive completeness
are explained in the Appendix. In particular, the (†) condition says that any
hypothetical application of the rule β is redundant in the branch B of the
refined calculus. As a corollary, we obtain the following statement.

Theorem 6.2 ([15]) If T is constructively complete and the (†) condition

10 Terminating tableau calculi for modal logic K with global counting operators

Refined (¬3)-rule:

(¬3)
¬ν(3ϕ,w), z ≈ z
¬R(w, z) | ¬ν(ϕ, z)

; (¬3)R
¬ν(3p, w), R(w, z)

¬ν(p, z)

Refined transitivity rule for equality:

(Tr)
x 6≈ y | y 6≈ z | x ≈ z ; (Tr)R

x ≈ y, y ≈ z
x ≈ z

Figure 5: Refined rules of T RK(En)

holds for every open and fully expanded branch in a T R-tableau, then T R is
constructively complete.

In TK(En)
two branching rules are refinable by decreasing their branching

factor: the (¬3) rule and the transitivity rule for equality (as shown in Fig. 5).

Proposition 6.3 Condition (†) is satisfied in TK(En)
for the rules (¬3)R and

(Tr)R from Figure 5.

Refining any of the remaining branching rules turns TK(En)
into an in-

complete calculus. As it was mentioned above, the rules (¬∧) and (¬E>n)
are not refinable. An example showing that (¬∧) cannot be refined can
be obtained from a similar example for the disjunction rule in [15]. Due
to the large branching factor of the (¬E>n) rule, its unrefinability to
¬ν(E>nϕ,x),¬ν(ϕ,y1),...,¬ν(ϕ,yn+1)

|
0<i<j≤n+1

(yi≈yj) is a more significant loss. As an example con-

sider the input set Γ = {ν(¬E>1¬p, x), ν(q, y)}. No rules are applicable to Γ
therefore the derivation stops at the initial node. A model reflecting the branch
M(B) = 〈W,R,v〉 is defined by: W = {{x}, {y}}, R = ∅, v(p) = ∅,
v(q) = {y}. It therefore follows that both worlds x and y satisfy ¬p, so ¬E>1¬p
is not satisfied by M(B) although the formula is evidently satisfiable.

Both failures could be neutralized by introducing an analytic cut rule:
x≈x

ν(ϕ,x)|¬ν(ϕ,x) where x is any term of the domain sort and ϕ is a subformula of

a formula occurring in the branch. The rule is the tableau-counterpart to the
law of excluded middle.

7 Refinement via elimination of domain sort symbols

A second refinement described in [15] allows the synthesised rules to the refor-
mulated without the use of the ν-predicate or any other domain sort symbols.
This is possible for logics allowing the encoding of domain expressions by its own
means. This can be done for hybrid logic with the @-operator. There are three
basic cases of domain expressions (modulo negation): ν(ϕ, x), R(x, y), x ≈ y.
Each of them can be mimicked by a suitable hybrid logic H(@)-formula [15]:

H(ν(ϕ, x)) = @ixϕ

H(R(x, y)) = @ix3jy

H(x ≈ y) = @ixjy

H(¬ν(ϕ, x)) = @ix¬ϕ
H(¬R(x, y)) = @ix¬3jy
H(x 6≈ y) = @ix¬jy

(3)

Khodadadi, Schmidt, Tishkovsky, Zawidzki 11

K(En)(ν(ϕ, x)) = E=1px ∧ E=0(px ∧ ¬ϕ)

K(En)(¬ν(ϕ, x)) = E=1px ∧ E=0(px ∧ ϕ)

K(En)(R(x, y)) = E=1px ∧ E=1py ∧ E=0(px ∧ ¬3py)

K(En)(¬R(x, y)) = E=1px ∧ E=1py ∧ E=0(px ∧3py)

K(En)(x ≈ y) = E=1px ∧ E=1py ∧ E=0(px ∧ ¬py)

K(En)(x 6≈ y) = E=1px ∧ E=1py ∧ E=0(px ∧ py)

In each case px, py are fresh propositional variables not occurring in Γ.

Figure 6: K(E)n-expressions to replace domain sort expressions

The logic K(E)n is not equipped with syntactic constructs for naming worlds
such as nominals in hybrid logic H(@). However, due to the fact that the E>n-
operators combine counting properties and global range, we are able to bypass
explicit labelling expressions by exploiting the E=1-operator in an appropriate
way. For each input set of formulas Γ we can encode domain sort expressions
as specified in Fig. 6. We only need to show that the respective formulas in
the figure actually encode the respective domain sort expressions.

Proposition 7.1 The domain sort expressions ν(ϕ, x), R(x, y), x ≈ y hold
in a model I iff the respective K(En)-formulas from Fig. 6 hold in a suitable
conservative extension M′ of a Kripke model M = 〈W,R, V 〉, where W =
Dom(I), RI = RM and ν(p, x) iff x ∈ V (p) for each p ∈ prop.

For convenience and economy of space, we introduce a new colon notation.
We abbreviate formulas of the form: E=1ϕ ∧ E=0(ϕ ∧ ¬ψ) as ϕ : ψ.

To accomplish the refinement of our calculus we need to introduce one
additional element. We define a countable set F = {fj}j∈N where each fj :
form × form → form is a function. The intention is to have a countable
set of function symbols to obtain an expression class analogous to a class of
Skolem terms in the first-order meta-language.

Figure 7 presents the rules of the refined calculus T Rd

K(E)n
including the unre-

stricted blocking mechanism. A benefit resulting from dispensing with domain
symbols is fewer rules.

The colon notation makes the refined tableau calculus resemble standard
prefixed calculi. For a given input set of formulas Γ a label of the initial node is a
propositional variable obtained by translating ν(

∧
Γ, x) based on the encoding

in Fig. 6. New labels introduced by the rules (3) and (E>n) are arbitrary
formulas (by definition of functional symbols fi). The reader might be surprised
by the rule (3), since the first formula in the conclusion is of the same form as
the premise formula, which might in principle lead to infinite derivations. What
distinguishes these two is the fact that the formula under the scope of 3 in the
premise is not necessarily a labelling formula, whereas a formula that appears
under the scope of 3 in the conclusion certainly is. This makes it subject to
applications of the (sub1), (sub2) and (ub) rules which ensure finiteness (with
respect to (3)-application) of at least one of the branches.

The refinement consisting of refining away domain sort symbols, as de-

12 Terminating tableau calculi for modal logic K with global counting operators

Rules for the connectives:

(¬¬)
ϕ : ¬¬ψ
ϕ : ψ

(∧)
ϕ : ψ ∧ χ
ϕ : ψ,ϕ : χ

(¬∧)
ϕ : ¬(ψ ∧ χ)

ϕ : ¬ψ | ϕ : ¬χ

(3)
ϕ : 3ψ

ϕ : 3f(3ψ,ϕ), f(3ψ,ϕ) : ψ
(¬3)

ϕ : ¬3ψ,ϕ : 3χ, χ : χ

ϕ : ¬ψ

(E>n)
ϕ : E>nψ

f1(E>nψ,ϕ) : ψ, . . . , fn+1(E>nψ,ϕ) : ψ ,
0<k<l≤n+1

fk(E>nψ,ϕ) : ¬fl(E>nψ,ϕ)

(¬E>n)
ϕ : ¬E>nψ, χ1 : χ1, . . . , χn+1 : χn+1

χ1 : ¬ψ | · · · | χn+1 : ¬ψ |
0<k<l≤n+1

χk : ¬χl

Rules for equality, closure rule, unrestricted blocking rule:

(ref)
ϕ : ψ

ϕ : ϕ
(con)

ϕ : ψ,ψ : ψ

f(χ, ϕ) : f(χ, ψ)
(sub1)

ϕ : ψ,ψ : ψ,ϕ : χ

ψ : χ

(⊥)
ϕ : ψ,ϕ : ¬ψ

⊥
(ub)

ϕ : ϕ,ψ : ψ

ϕ : ψ | ϕ : ¬ψ (sub2)
ϕ : ψ,ψ : ψ, χ : θ

χ : θ[ψ/ϕ]

Figure 7: Rules for refined calculus T Rd

K(E)n

scribed, preserves soundness, constructive completeness and termination. In
order to conduct proof of completeness, we define the ‘branch induced model’
M(B) = 〈W,R,V〉 as follows. Let ϕ ∼B ψ iff ϕ : ψ,ψ : ψ ∈ B. Then:

W = {[ϕ]∼B | ϕ : ϕ ∈ B}; R = {([ϕ]∼B , [ψ]∼B) | ϕ : 3ψ,ψ : ψ ∈ B};
V = {(p, U) | p ∈ prop, p occurs in B and U = {[ϕ]∼B | ϕ : p ∈ B}}.
It follows from the construction of T Rd

K(E)n
-tableau that we do not need to

interfere with the well-founded ordering given in (2).

8 MetTeL2 implementation

In order to implement a prover based on the prefix tableau calculus TK(E)n we
used MetTeL2 [17,1], a new tableau prover generator. MetTeL2 automatically
generates JAVA code of a tableau prover from the syntax specification of a
logical theory and a set of tableau rules provided by the user. MetTeL2 fully
supports dynamic backtracking and backjumping and uses the unrestricted
blocking mechanism to ensure termination.

At the moment, MetTeL2 does not support specifications of logical connec-
tives and tableau rules which are parameterised by numerical values. Because
of this, all the operators E>n for different n are specified as separate connec-
tives up to some fixed number N . For each particular number N required for
the formalisation of a set of test problems, we wrote a script to automatically
produce a language specification and a tableau specification for the logic K(E)n,
where the parameter n in the operators E>n is limited by N . The obtained
language and tableau specifications are passed to MetTeL2 which generates a
tableau prover for the logic of the restricted language.

Khodadadi, Schmidt, Tishkovsky, Zawidzki 13

The generated prover is not intended to be a state-of-the-art prover but
can be used for experimenting with the tableau calculus. During our investi-
gation we found it useful to test problems and experiment with different rule
refinements. For example, experimenting with the (¬E>n) rule and its refined
variant we discovered that the calculus loses completeness under such a re-
finement. This directed us to look for a counterexample to the condition (†)
and to realise subsequently that this rule is not refinable. Various further ex-
periments showed that it is possible to eliminate nominals from the calculus
replacing them by formulae without loosing good properties of the calculus.
The generated provers can be optimised and tuned further by integrating user
implemented proof strategies using the of provided API of MetTeL2.

A specifications of the syntax of K(E)n and the presented tableau calculus
are available at the MetTeL2 on-line demo page [1], where the user is allowed
to amend the specifications and to regenerate the prover.

9 Related work

Several tableau-based decision procedures for logics with counting operators
have been established so far, all of them in the field of description logics. We
mention three to draw some parallels between them and our system.

Kaminski, Schneider and Smolka in [11] introduce a tableau algorithm for
the logic SHOQ (a description logic with nominals, graded modalities and
graded counting modalities). The tableau rules for the counting fragment re-
semble ours, the only difference lies in a blocking mechanism they use, namely
pattern-based blocking. It consists in searching potential successors of worlds
among worlds that are already present in a branch. In this search the au-
thors exploit the notion of pattern which is a set of 3-formulas and 2-formulas
that hold in a particular world. Advantages of this approach are: keeping the
tableau calculus in the complexity class of the logic, namely it is NexpTime-
complete, and ensuring fewer mergings of worlds. Compared to our calculus the
approach is conceptually more complex (apart from the notion of pattern itself,
it introduces several new concepts such as evidence, quasi-evidence, evidence-
completion). That makes the decision strategy quite complicated, though in
terms of complexity the system of Kaminski et al. is complexity-optimal. This
tableau calculus is internalised, i.e., it does not involve any extra-logical expres-
sions to label the worlds in a tableau, however, it exploits nominals not present
in K(En). In the second refinement of our calculus we show how to dispose
of meta-language domain expressions and internalise the semantics, only using
global counting and not introducing any additional expressions.

Horrocks, Sattler and Tobies in [10] introduce a tableau algorithm for the
logic SHIQ (a description logic with nominals, cardinality constraints and
inverse operators). As for [11], the tableau rules for the counting operators are
similar to ours, though we use Skolem terms whereas in [10] the rules introduce
fresh constant. An aspect that distinguishes their tableau approach from ours
is, again, the blocking technique involved. The mechanism they use is pairwise
blocking. It consists in comparing not worlds but pairs of worlds. Assume that

14 Terminating tableau calculi for modal logic K with global counting operators

we have two pairs of worlds x, y and x′, y′. The latter pair can be blocked iff the
former pair occurred in a branch as first and L(x) = L(x′), L(y) = L(y′) and
L(x, y) = L(x′, y′). It follows that not only must the respective nodes satisfy
the same formulas, but also they must be linked in the same way. Horrocks
et al. thus obtain a terminating tableau algorithm. Their approach, again, is
internalised but uses nominals as labels.

In [6] Faddoul, Farsina, Haarslev and Möller present a completely different
tableau-based decision procedure for logics with cardinality constraints. They
designed a hybrid system for the logic ALCQ (a description logic with cardi-
nality constraints). Based on the atomic decomposition technique [12], they
split the derivation process into an arithmetical part and a logical part. Boldly
speaking, for each decided formula its ‘counting’ part (i.e., containing counting
operators) is turned into a set of inequalities which has to be solved before
the application of other rules to it. This approach was proven to be more effi-
cient than the one presented in [10] but remains in the same complexity class
(NexpTime-complete). Unfortunately, the atomic decomposition technique is
not applicable to the logic K(E)n since it requires role hierarchies not available
in K(E)n.

In comparison to the aforementioned approaches, the approach presented in
this paper is conceptually simpler due to the intuitive concept of unrestricted
blocking incorporated into the calculus as an inference rule. Moreover, even
though the (ub) rule allows for comparing arbitrary worlds present in a branch,
the whole calculus remains complexity-optimal (which mainly follows from high
computational complexity of K(E)n). We also showed how to encode the se-
mantics of the logic, only using counting operators, and thus obtain a refined
version of the calculus.

10 Concluding remarks

The presentation of tableau calculi for the logic K(E)n in this paper shows
that tableau calculi can be derived and refined in a systematic way based on
the principles of the tableau synthesis framework [15]. We proved the finite
model property of K(E)n, thus giving us an easy way to obtain tableau decision
procedures by using the unrestricted blocking mechanism. Novel in this paper
is the refinement that results in a ‘direct’ tableau calculus in which the rules
are defined in the language of the object logic. This is possible as K(E)n is
expressive enough to define its own semantics.

Although in our considerations we confined ourselves to the logic K with
global counting operators, it is apparent that no particular feature distinguishes
logic K from other normal modal logics in respect to the results established in
the paper. In fact, we can extend their scope by simply enriching the back-
ground theory with frame conditions for respective logics and slightly modifying
proofs of completeness and termination theorems.

Possible directions of a future work involve specialising the unrestricted
blocking mechanism so it deals with counting operators more efficiently. Fur-
thermore, the efficiency of the hybrid approach of [6] is motivation to explore

Khodadadi, Schmidt, Tishkovsky, Zawidzki 15

whether integer programming methods are applicable to K(En) without intro-
ducing role hierarchies.

Acknowledgements

We thank Ian Pratt-Hartmann for valuable suggestions on Theorem 5.2. This
research has been supported financially by the National Science Centre of
Poland (decision no. DEC-2011/01/N/HS1/01979) and the UK EPSRC (grant
no. EP/H043748/1).

References

[1] MetTeL website, http://mettel-prover.org.
[2] Areces, C., G. Hoffmann and A. Denis, Modal logics with counting, in: Proceedings of

WoLLIC 2010, Brasilia, Brazil, 2010.
[3] Blackburn, P., M. de Rijke and Y. Venema, “Modal logic,” Camb. Univ. Pr., NY, USA,

2001.
[4] Caro, F., Graded modalities, II (canonical models), St. Log. 47 (1988), pp. 1–10.
[5] Cerrato, C., Decidability by filtrations for graded normal logics (graded modalities v),

St. Log. 53 (1994), pp. 61–73.
[6] Faddoul, J., N. Farsinia, V. Haarslev and R. Möller, A hybrid tableau algorithm for alcq,

in: Proceedings ECAI 2008 (2008), pp. 725–726.
[7] Fattorosi-Barnaba, M. and F. Caro, Graded modalities. i, St. Log. 44 (1985), pp. 197–

221.
[8] Fine, K., In so many possible worlds, N. D. J. For. Log. 13 (1972), pp. 516–520.
[9] Fürer, M., The computational complexity of the unconstrained limited domino problem,

in: Proceedings of the Symposium ”Rekursive Kombinatorik” on Logic and Machines:
Decision Problems and Complexity (1984), pp. 312–319.

[10] Horrocks, I., U. Sattler and S. Tobies, Reasoning with individuals for the description
logic shiq, in: Proceedings of (CADE-17), LNCS (2000).

[11] Kaminski, M., S. Schneider and G. Smolka, Terminating tableaux for graded hybrid logic
with global modalities and role hierarchies, in: TABLEAUX 2009, LNCS (LNAI) 5607
(2009), pp. 235–249.

[12] Ohlbach, H. J. and J. Koehler, Role hierarchies and number restrictions, in: R. B. et.
al., editor, Description Logics, URA-CNRS 410, 1997.

[13] Pratt-Hartmann, I., The two-variable fragment with counting revisited, in: Proceedings
of WoLLIC’10, 2010.

[14] Schmidt, R. A., Synthesising terminating tableau calculi for relational logics: Invited
paper, in: RAMiCS 12, LNCS 6663 (2011), pp. 40–49.

[15] Schmidt, R. A. and D. Tishkovsky, Automated synthesis of tableau calculi, Log. Meth.
in Comp. Sc. 7 (2011), pp. 1–32.

[16] Schmidt, R. A. and D. Tishkovsky, Using tableau to decide description logics with full
role negation and identity (2011), manuscript, available at http://www.mettel-prover.
org/papers/ALBOid.pdf.

[17] Tishkovsky, D., R. A. Schmidt and M. Khodadadi, MetTeL2: Towards a
prover generation platform (system description) (2012), available at http://www.

mettel-prover.org/papers/MetTeL2SysDesc.pdf.
[18] van der Hoek, W. and M. de Rijke, Counting objects, J. Log. Comp. 5 (1995), pp. 325–

345.
[19] Zawidzki, M., Adequacy of the logic K(En) (2011), to appear.

http://mettel-prover.org
http://www.mettel-prover.org/papers/ALBOid.pdf
http://www.mettel-prover.org/papers/ALBOid.pdf
http://www.mettel-prover.org/papers/MetTeL2SysDesc.pdf
http://www.mettel-prover.org/papers/MetTeL2SysDesc.pdf

16 Terminating tableau calculi for modal logic K with global counting operators

A Constructive completeness of TK(E)n

The calculus TK(E)n is not only complete but also constructively complete. Be-
fore we give a formal definition of constructive completeness and prove that
TK(E)n has this property, we will introduce several preliminary notions.

For an open, fully expanded branch B, let ∼B be a relation defined as
follows: x ∼B y iff x ≈ y ∈ B. Because all the equality rules are applied in the
branch, ∼B is an equivalence relation.

For a model M = (W,R, V) let γ : FO(K(E)n) → W ∪ FO(K(E)n) be a
function that maps each propositional variable of the sort 1 to itself and each
term of the domain sort to an element of a domain W of a model M. We say
that the model M reflects a formula ϕ of the sort 1 that occurred in a branch B
if the following two conditions are true.

(i) if ν(ϕ, x) ∈ B then M, γ(x) |= ϕ;

(ii) if ¬ν(ϕ, x) ∈ B then M, γ(x) 6|= ϕ.

We say that M reflects B iff it reflects all formulas of the sort 1 that appear
in B.

It worth noting that, in general, ν(ϕ, x) ∈ B and ¬ν(ϕ, x) ∈ B are not
complementary and there are tableau derivations where neither of such terms
occur in some branch.

We call a tableau calculus T constructively complete iff for each input set
of formulas Γ, for any open, fully expanded branch B in a tableau T (Γ) there
exists a model M such that:

(i) the domain W of M is defined as follows: W = {[x]∼B | x ≈ x ∈ B};
(ii) M reflects B under the canonical projection valuation π defined as follows:

π(x) = [x]∼B for every term x of the domain sort that appeared in B.

Now, suppose that Γ is a set of formulas. Let Γ be an input set for our
tableau calculus TK(E)n . We denote a tableau for Γ by TK(E)n(Γ). Let B be
an open, fully-expanded branch of TK(E)n(Γ). We associate with B a model
M(B) = 〈W,R,V〉 defined as follows:

W = {π(x) | x is a term of the domain sort and x ≈ x ∈ B},
R = {(π(x), π(y)) | x, y are terms of the domain sort and R(x, y) ∈ B},

and V maps every propositional variable p of the sort 1 to the set {π(x) |
ν(p, x) ∈ B}.
Lemma A.1 Let Γ be an input set of K(E)n-formulas. Let B be an open, fully
expanded branch of a tableau for Γ. Then M(B) reflects B, that is:

(i) for any K(E)n-formula ϕ, if ν(ϕ, x) ∈ B then M(B), π(x) |= ϕ;

(ii) if R(x, y) ∈ B then (π(x), π(y)) ∈ R;

(iii) if x ≈ y then π(x) = π(y).

Proof Since (ii) and (iii) follow directly from the construction of R, the def-
inition of M(B) and the construction of W respectively, we confine ourselves

Khodadadi, Schmidt, Tishkovsky, Zawidzki 17

to the proof of (i). We proceed by induction on ≺ from (2).

ϕ = p. Since ν(p, x) ∈ B, by definition of v we obtain that π(x) ∈ v(p), whence
M(B), π(x) |= p.

ϕ = ¬ψ. We consider the following cases:
ψ = ¬χ. We have that ν(¬¬χ, x) ∈ B. Branch B is fully expanded so rules

(¬) and (¬¬) must have been already applied to ϕ = ¬¬χ. Hence ν(χ, x) ∈
B. By induction hypothesis M(B), π(x) |= χ.

ψ = χ ∧ θ. ν(¬(χ∧θ), x) occurred in B. Because B is fully expanded we have
that (¬∧) has been applied to ν(¬(χ ∧ θ), x). Thus, either ν(¬χ, x) ∈ B
or ν(¬θ, x) ∈ B holds. Suppose that the former is the case. Then, by
induction hypothesis, M(B), π(x) |= ¬χ. It follows that M(B), π(x) |= ¬χ
or M(B), π(x) |= ¬θ, so by definition of M(B) we derive M(B), π(x) |=
¬(χ ∧ θ). The latter can be proved similarly.

ψ = 3χ. We have that ν(¬3χ, x) ∈ B. Let π(y) be arbitrary element of
W such that (π(x), π(y)) ∈ R. By construction of R there are terms
u, v such that R(u, v) ∈ B, x ≈ u ∈ B, y ≈ v ∈ B. Since B is open
and fully expanded, by the equality rules, we have that R(x, y) ∈ B.
Thus, by the rule (¬3), we obtain ν(¬χ, y). By induction hypothesis
we have M(B), π(y) |= ¬χ. Because π(y) was arbitrarily chosen, we have
M(B), π(x) |= ¬3χ.

ψ = E>nχ. Let π(x1), . . . , π(xn+1) ∈ W and such that π(xi) 6= π(xj) for
0 < i < j ≤ n + 1. It follows that xi ≈ xi ∈ B for i = 1, . . . , n + 1 and
xi 6≈ xj ∈ B for 0 < i < j ≤ n + 1. Since the rule (¬E>n) is applied
to ν(¬E>nχ, x) in B we have ν(¬χ, xi) ∈ B for some i = 1, . . . , n + 1.
By inductive hypothesis we get M(B), π(xi) |= ¬χ. Since n + 1-tuple of
elements of W was picked arbitrarily, by definition of M(B) we obtain
M(B), π(x) |= ¬E>nχ.

ϕ = ψ ∧ χ. By application of (∧) to ν(ψ ∧ χ, x), we have ν(ψ, x) ∈ B and
ν(χ, x) ∈ B. By inductive hypothesis we have M(B), π(x) |= ψ and
M(B), π(x) |= χ and, thus, M(B), π(x) |= ψ ∧ χ.

ϕ = 3ψ. Since the rule (3) is applied to ν(3ψ, x) in B we have
R(x, f(ψ, x) ∈ B and ν(ψ, f(ψ, x) ∈ B. By construction of R we con-
clude that (π(x), π(f(ψ, x))) ∈ R. Furthermore, by induction hypothesis,
M(B), π(f(ψ, x)) |= ψ. Hence, M(B), π(x) |= 3ψ by definition of truth
relation.

ϕ = E>nψ. Because B is open and fully expanded, so (E>n)-rule has been ap-
plied to E>nψ. Therefore, it follows that ν(ψ, x1) ∈ B, . . . , ν(ψ, xn+1) ∈ B
and xi 6≈ xj ∈ B for 0 < i < j ≤ n + 1. By induction hypothesis and by
construction of W we obtain that M(B), π(xi) |= ψ for i = 1, . . . , n+1. Since
B is open xi ≈ xj /∈ B for 0 < i < j ≤ n + 1 and, hence, π(xi) 6= π(xj) for
0 < i < j ≤ n+ 1. By definition of truth relation this means M(B) |= E>nψ.

2

Theorem A.2 TK(En)
is a constructively complete tableau calculus for K(En).

18 Terminating tableau calculi for modal logic K with global counting operators

Proof Follows from the construction of M(B) and Lemma A.1. 2

B Proofs of other propositions and theorems

Proof of Proposition 5.1. Henceforth, without loss of generality, we treat Γ
as

∧
Γ =

∧
{ψ | ψ ∈ Γ}. We search for a branch B and M(B) = 〈W,R,V〉

such that Card(W) ≤ Card(U). We construct B inductively on application of
the rules in derivation.

Base case: ϕ = Γ. We have ν(Γ, x) in an initial step of our derivation. Since
Γ is satisfied by N, there exists x ∈ U such that N,x |= Γ. We set x = x.

Inductive step: We assume that up to the n-th step of derivation we matched
each expression of the domain sort, that have occurred in the tableau, with
an appropriate world in N

(∧) Assume that in the n-th step of derivation we obtained a formula of the
form ν(ϕ ∧ ψ, x). By the inductive hypothesis, there exists x ∈ U such
that N,x |= ϕ ∧ ψ. By definition of a model, it follows that N,x |= ϕ and
N,x |= ψ, so after applying (∧) and obtaining ν(ϕ, x) and ν(ψ, x), matching
x = x still holds.

(¬∧) We have a formula of the form ¬ν(ϕ∧ψ, x). By the inductive hypothesis,
there exists x ∈ U such that N,x |= ¬(ϕ ∧ ψ). By definition of a model, it
follows that N,x 6|= ϕ or N,x 6|= ψ. After applying (¬∧) which is a branching
rule, we obtain ¬ν(ϕ, x) in the left branch and ¬ν(ψ, x) in the second branch.
We choose left branch in the first case and right branch in the second and
leave the matching x = x.

(3) In the n-th step of derivation we have a formula of the form ν(3ϕ, x).
By the inductive hypothesis, there exists x ∈ U such that N,x |= 3ϕ and,
therefore, that there is y ∈ U such that S(x,y) holds and N,x |= ϕ. After
applying (3) we obtain R(x, f(3ϕ, x)) and ν(ϕ, f(3ϕ, x)). We set y =
f(3ϕ, x).

(¬3) We have formulas of the form ¬ν(3ϕ, x) and y ≈ y. Since y must have
occurred in B so far, we have already fixed a particular y ∈ U that y = y.
By the inductive hypothesis, there exists x ∈ U such that N,x |= ¬3ϕ and,
therefore, that either S(x,y) does not hold or N,x 6|= ϕ. After applying
(¬3) being a branching rule we obtain ¬R(x, y) and ¬ν(ϕ, y). If the former
is the case we choose the left branch, if the latter is the case we choose the
right branch and leave the matching x = x, y = y.

(E>n) In the n-th step of derivation we have a formula of the form ν(E>nϕ, x).
By the inductive hypothesis, there exists x ∈ U such that N,x |= E>nϕ
and, therefore, that there is n+ 1-tuple of distinct worlds x1, . . . ,xn+1 ∈ U
such that N,x1 |= ϕ . . .N,xn+1 |= ϕ. After applying (E>n) we obtain and
ν(ϕ, f1(E>nϕ, x)), . . . , νn+1(ϕ, f1(E>nϕ, x)) and xi 6≈ xj for 0 < i < j ≤
n+ 1. We set x1 = f1(E>nϕ, x), . . . ,xn+1 = fn+1(E>nϕ, x).

(¬E>n) We have formulas of the form ¬ν(E>nϕ, x), y1 ≈ y1, . . . , yn+1 ≈ yn+1.

Khodadadi, Schmidt, Tishkovsky, Zawidzki 19

y1, . . . , yn+1 must have already occurred in B, so we matched them with
particular y1, . . . ,yn+1. By the inductive hypothesis, there exists x ∈ U such
that N,x 6|= E>nϕ. It means that either N,yi 6|= ϕ for some i ∈ {1, . . . , n+1}
or yi 6= yj for some 0 < i < j ≤ n+ 1. After application of (¬E>n) we pick
the correct branch, subject to the case that turned out to hold for N.

(ub) Two formulas x ≈ x and y ≈ y have already occurred in the branch. It
means that we affixed two worlds x,y ∈ U to them, respectively. It either
is the case that x = y or x 6= y. After applying (ub) we chose left branch if
the former is the case and we chose the right branch if the latter holds.

Thus, we showed that if there is a Γ-model N = 〈U,S,Z〉 then in a tableau
derivation we can find a branch B and a model M(B) = 〈W,R,V〉, and sub-
sequently fix a function g : U −→W defined as follows:

g(x) =

[x]≈, if there is x ≈ x ∈ B such that x was affixed
to x whilst derivation

arbitrary element of W, otherwise

By construction of M(B) it follows that g is onto. Hence the conclusion.

Proof of Theorem 5.2. Let ϕ be a formula satisfiable on a (possibly in-
finite) model M = 〈W,R, V 〉. We show that there exists a finite model
M′ = 〈W ′, R′, V ′〉 on which ϕ is satisfiable.
We proceed in two steps.
In the first step we exploit a filtration-like method to divide the universe W into
finite number of equivalence classes. We fix the equivalence relation !Sub(ϕ)

in the following way:

w!Sub(ϕ) v iff for all ψ ∈ Sub(ϕ) (M, w |= ψ iff M, v |= ψ).

It is straightforward that there are only finitely many such equivalence classes,
namely 2Card(Sub(ϕ)).
In the second step we abandon the ordinary filtration procedure. Instead of
merging all worlds from the equivalence classes, we reduce the cardinality of
each class in the following manner. Let [w] ⊆ W be an arbitrary !Sub(ϕ)-
equivalence class. If Card([w]) > n + 1 then we delete all but n + 1 arbitrary
worlds from [w]. If Card([w]) ≤ n + 1 then we leave [w] unchanged. Next,
from each reduced equivalence class w′ we pick an arbitrary representative
w0. We set a new model M′ = 〈W ′, R′, V ′〉 where W =

⋃
[w]∈W/!Sub(ϕ)

[w′],

R′ = R � W ′ ∪
⋃

[w],[v]∈W/!Sub(ϕ)
{(w, v0) | w ∈ [w′], (w, v) ∈ R, v ∈ v \ [v′]}

and V ′ = V �W ′.
We prove that M′ is a model for ϕ by induction on the complexity of the ele-
ments of Sub(ϕ).
The Boolean cases are obvious and follow directly from the definition of W ′

and V ′.
Suppose that a formula 3ψ is satisfiable on M. It means that there exists
such w ∈ W that M, w |= 3ψ. We pick arbitrary w′ ∈ [w′]. By definition of

20 Terminating tableau calculi for modal logic K with global counting operators

!Sub(ϕ) it follows that M, w′ |= 3ψ. Consequently, we can find v ∈ W such
that (w′, v) ∈ R and M, v |= ψ. If v ∈ [v′] then we have also M′, w′ |= 3ψ.
Otherwise, by definition of !Sub(ϕ) and R′ there exists v0 ∈ [v′] such that
(w′, v0) ∈ R′ and M, v0 |= ψ. Therefore, 3ψ is satisfiable on M.
Now, assume that a formula E>mψ is satisfied by M. It means that there exist
more than m worlds in which ψ holds. Two cases may occur. Either ψ holds
in elements of (at least one) equivalence class [w] such that Card([w]) > n.
Then, by the construction of w′, we obtain that E>m is satisfied by M′.
Otherwise ψ holds in elements of equivalence classes [w]i1 , . . . , [w]ik such that

Card([w]ij =≤ n and
∑k
j=1 Card([w]ij) > n. But by construction of [w]′ij these

classes remained unchanged in W ′, therefore
∑k
j=1 Card([w′]ij) > n. It follows

that E>m is satisfied by M′. Obviously, reduction of the size of W cannot
disturb satisfiability of the formulas E<mψ on M′.
Since Card(W/ !Sub(ϕ)) = 2Sub(ϕ) and for each [w′] obtained from
[w] ∈ W/ !Sub(ϕ) Card([w′]) ≤ n + 1, it is clear that Card(W ′) ≤
2Card({Sub(ϕ)})+log(n+1). That completes the proof.

Proof of Proposition 6.3. The case of (Tr)R is trivial. It follows from
construction of W and transitivity of identity relation between worlds in W.
The case of (¬3)R can be proven in the following way. Let ϕ be an arbitrary
formula occurred in B and reflected in M(B). Assume ¬ν(3ϕ, x) ∈ B and
a domain term y is occurred in B. We must prove that either R(π(x), π(y))
does not hold in M(B) or M(B), π(y) 6|= ϕ. Suppose R(π(x), π(y)) holds. By
construction of M(B) it means that R(z, v), z ≈ x, v ≈ y must have occurred in
B. Thus, by the equality rules R(x, y) ∈ B and, consequently, the rule (¬3)R

has been applied in B. Therefore, ¬ν(ϕ, y) ∈ B. Because ϕ is reflected in M(B)
this means that M(B).π(y) 6|= ϕ.

Proof of Proposition 7.1. Case: ν(ϕ, x),¬ν(ϕ, x). (←) Suppose that a
formula ϕ holds in world x (which is expressed by ν(ϕ, x)). Then we pick a
conservative extension of M by introducing a fresh propositional variable px
and extending v to v′ in such a way that v′ agrees with v on all propositional
variables from Γ and v′(px) = {x}. Then, by definition of E=1, E=1px holds
and since px holds a unique world, namely x where also ϕ holds, for no world
it is the case that both px and ¬ϕ hold. Therefore, E=1px ∧ E=0(px ∧ ¬ϕ) is
satisfied on M′.

(→) Suppose that a formula E=1px ∧ E=0(px ∧ ¬ϕ) is satisfied on M′ is
satisfied on a conservative extension M′ = 〈W,R, V ′〉, where v′(px) = {x}.
It therefore follows that for no world both px and ¬ϕ hold. Since x is the
only world where pi holds, it must be the case that ϕ holds in x. The case of
¬ν(ϕ, x) proceeds analogically.

Case: R(x, y),¬R(x, y). (←) Suppose that R(x, y) holds. We pick a con-
servative extension of M by introducing two fresh propositional variables px
and py and extending v to v′ such that they agree on all propositional variables
from Γ and, additionally, v′(px) = {x} and v′(py) = {y}. Since py holds in y
and (x, y) ∈ R, then by (1) we obtain that 3py holds in x. x is the unique

Khodadadi, Schmidt, Tishkovsky, Zawidzki 21

world where px holds so for all worlds it cannot be the case that px ∧ ¬3py
holds. Hence the conclusion.

(→) Assume that E=1px ∧ E=1py ∧ E=0(px ∧ ¬3py) is satisfied in a conser-
vative extension of M where v′(px) = {x} and v′(py) = {y}. For no world in
which px is true ¬3py is also true. It follows that 3py holds in x and, by (1),
R(x, y). We proceed similarly for ¬R(x, y).

Case: x ≈ y, x 6≈ y. (←) Suppose that x ≈ y holds. It means that worlds
x and y coincide on M. We pick a conservative extension of M by adding two
fresh propositional variables px and py and extending v to v′ in such way that
v′(px) = {x} and v′(py) = {y}. Since x and y are the same world which is the
unique world where either, px and py hold, it means that there is no world in
which px ∧ ¬py hold. It completes this part of the proof.

(→) Suppose that E=1px ∧ E=1py ∧ E=0(px ∧ ¬py) is satisfied on M′, a
conservative extension of M where px, py are fresh and v′(px) = {x}, v′(py) =
{y}. Since there is no world where both px and ¬py hold, it must be the
case that in all worlds in which px holds, py also holds. But there is only one
world satisfying px, namely x, and one world satisfying y, namely y. Since
conjunction of both these hold in both worlds, by (1) they must coincide. We
conduct a similar proof for x 6≈ y.

	Introduction
	The logic K (E)n
	The tableau calculus TK (E)n
	Soundness and completeness of TK (E)n
	Termination of the calculus
	Rule refinement of TK (E)n
	Refinement via elimination of domain sort symbols
	MetTeL2 implementation
	Related work
	Concluding remarks
	References
	Constructive completeness of TK (E)n
	Proofs of other propositions and theorems

