
MetTeL2: Towards a Prover Generation Platform

Dmitry Tishkovsky, Renate A. Schmidt, and Mohammad Khodadadi

School of Computer Science, The University of Manchester, UK
{dmitry,schmidt,khodadadi}@cs.man.ac.uk

Abstract This paper introduces MetTeL2, a tableau prover generator
producing Java code from the specifications of a logical syntax and a
tableau calculus. It is intended to provide an easy to use system for non-
technical users and allow technical users to extend the implementation
of generated provers.

1 Introduction

Building a platform for automatically generating provers from the definition of
a logic is a very challenging task. As the problem of generating a deduction
calculus from the definition of a logic is highly undecidable, the best that we can
hope for is technology for solving the problem for certain restricted cases. The
tableau method introduced in the 1950s by Beth and Hintikka based on the work
of Gentzen in the 1930s and thoroughly studied by Smullyan in the 1960s has
become one of the most popular deduction approaches in automated reasoning.
Tableau methods in various forms exist for various logics and many implemented
tableau provers exist. Based on this collective experience in the area our recent
research has been concerned with trying to develop a framework for synthesising
tableau calculi from the specification of a logic or logical theory. The tableau
synthesis framework introduced in [6] effectively describes a class of logics for
which tableau calculus synthesis can be done automatically. This class includes
many modal, description, intuitionistic and hybrid logics. Our long-term goal is
to synthesise not only tableau calculi but also implemented tableau provers.

As a step towards this goal we have implemented a tool, called MetTeL2, for
automatically generating an implemented tableau prover from the specification
of a set of tableau rules provided by the user. MetTeL2 is the successor of the
MetTeL tableau prover [8,1]. MetTeL is a tableau prover for a large class
of propositional modal-type logics, including various traditional modal logics,
dynamic model logics, description logics, hybrid logics, intuitionistic logic and
logics of metrics and topology. It does already allow users to specify their own
tableau calculi and use MetTeL as a prover for the specified calculus. The
specification language of MetTeL, though flexible, is based on a fixed set of
logical operators common to the mentioned logics. This means there is no facility
in the specification language to allow the user to define their own set of logical
operators unrelated to operators of modal-type logics.

Like MetTeL, LoTREC [5] and the Tableaux Work Bench (TWB) [2] are
generic tableau provers for modal-type logics. The systems differ however in

2 D. Tishkovsky, R. A. Schmidt, M. Khodadadi

various ways, for example, in the kind of tableau approach used, the specifica-
tion language provided, the way blocking is performed and configured, and the
possibilities to control the way the search performed.

The three systems do not produce code for a prover but rather act as virtual
machines that perform tableau derivations. On the one hand, it is not possible
to accommodate within a virtual machine all imaginable requirements for new
provers without giving the user appropriate flexibility in the specification lan-
guage. On the other hand, any specification language necessarily restricts the
user, which is useful, since it also reduces the number of potential specification
errors. This dilemma can be resolved by producing prover code that is ready
for possible modifications by an experienced user who may wish to tailor the
prover for better performance, for a particular application and other purposes
not envisaged by the prover developers.

MetTeL2 is the successor of the MetTeL prover and considerably extends
its functionality. MetTeL2 generates Java code for a tableau prover to parse
problems in the user-defined syntax and solve satisfiability problems. In order
to come closer to the vision of a powerful prover generation tool, MetTeL2 is
equipped with a flexible specification language for users to define their logic or
logical theory with syntactic constructs as they see fit. Thus no logical operators
are predefined in MetTeL2.

The generated tableau provers can be tuned further. Addressing the needs of
an advanced user, an API of the tableau core engine is designed to accept user-
defined tableau expansion strategies implemented as Java classes. The user is
allowed to modify the code, for example, by implementing their own strategies
for controlling the way the search is performed (search strategies, expression
queues, etc) or tableau rules which might interface with other provers.

Compared with the previous MetTeL system, the tableau reasoning core
of MetTeL2 has been completely reimplemented and several new features have
been added, the most important being: dynamic backtracking and conflict-direc-
ted backjumping, ordered forward and backward rewriting for operators declared
to be equality and equivalence operators. There is support for different search
strategies. The tableau rule specification language in MetTeL2 now allows the
specification of rule application priorities thus providing a flexible and simple
tool for defining rule selection strategies. To our knowledge, MetTeL2 is the
first system with full support of these techniques for arbitrary logical syntax.

2 Language specification

The language in MetTeL2 for specifying the syntax of a logical theory, is in
line with the many-sorted object specification language of the tableau synthesis
framework defined in [6]. We now give a simple ‘non-logical’ example for describ-
ing and comparing lists to illustrate how the language of a logical theory can be
defined in MetTeL2.

specification lists;
syntax lists{

sort formula, element, list;

MetTeL2: Towards a Prover Generation Platform 3

list empty = ’<>’ | composite = ’<’ element list ’>’;
formula elementInequality = ’[’ element ’!=’ element ’]’;
formula listInequality = ’{’ list ’!=’ list ’}’;

}

The first line starting with the keyword specification defines lists to be
the name of the user-defined logical language. The syntax lists{...} block
consists of a declaration of the sorts and definitions of logical operators in a
simplified BNF notation. Here, the specification is declared to have three sorts.
For the sort element no operators are defined. This means that all element
expressions are atomic. The second line defines two operators for the sort list:
a nullary operator <> (to be used for the empty list) and a binary, infix oper-
ator <..> (used to inductively define non-empty lists). composite is the name
of the operator <..>, which could have been omitted. The next two lines de-
fine how expressions of sort formula can be formed. For example, the line
formula listInequality = ’{’ list ’!=’ list ’}’; defines an inequal-
ity operator on lists, while the previous line defines an inequality operator on
elements (note the difference in notation via the brackets). This means formu-
lae can be two types of inequality expressions. The first mentioned sort in a
declaration, in our case formula, is the main sort of the defined language.

3 Tableau calculus specification

The tableau rule specification language of MetTeL2 is loosely based on the
tableau rule specification language of MetTeL, but extends it in significant
ways. The premises and conclusions of a rule are separated by / and each rule is
terminated by $;. Branching rules can have more than two sets of conclusions
and are separated by $| symbols. Premises and conclusions are expressions in
the user-defined logical language. Additionally, the user can annotate a rule with
a priority value. The default priority value of any rule with unspecified priority
is 0. Smaller priority values imply a rule has higher priority.

Turning back to the example of the previous section, tableau rules for list
comparison might be defined as follows.

[a != a] / priority 0$;
{L != L} / priority 0$;
{<a L0> != <b L1>} / [a != b] $| {L0 != L1} priority 2$;

As the parsing of rule specifications is context-sensitive the various identifiers
(a, L, L0, etc) are recognised as symbols of the appropriate sorts. Thus sorts of
identifiers are distinguished by their context and not their case. The first two
rules are closure rules since the right hand sides of the / are empty. They reflect
that inequality is irreflexive. The last rule is a branching rule.

4 Using MetTeL2

The binary version of MetTeL2 is distributed as a jar-file and requires Java
Runtime Environment, Version 1.6.0 or later. MetTeL2 can be called from the
command line as follows.

4 D. Tishkovsky, R. A. Schmidt, M. Khodadadi

tableau.rule.delimiter Terminator of tableau rules. Default: $;
tableau.rule.branch.delimiter Separator between branches in branching

rules. Default: $|
tableau.rule.premise.delimiter Separator of premises and conclusions in

rules. Default: /
branch.bound An expression for computing an apriori

bound on the maximal number of expressions
in a branch. Default: empty, this means the
feature is disabled

Figure 1. Properties accepted by MetTeL2.

>java −jar mettel2.jar [−i <sf>] [−t <tf>] [−d <od>] [−p <pf>]

A file with the syntax specification can be given using the −i option. A file
with the specification of the tableau rules can be given with the −t option. If
the −t option is specified MetTeL2 attempts to do everything for the user by
generating Java code, compiling it and producing a final executable jar-file of
the prover. In this case, Java Development Kit, Version 1.6.0 or later is required.

The directory where the generated code is placed can be given using the −d
option.

With the −p option the user can specify the name of a standard Java prop-
erty file where a currently small number of properties can be configured. Fig-
ure 1 lists the properties currently supported by MetTeL2. In order to be able
to handle logics with eventualities a non-standard feature to realise the ‘avoid
huge branch strategy’ (cf. [4,7]) is the branch.bound property. For example,
this line in the Java property file

branch.bound = ((int)(java.lang.Math.pow(2,%l)))

configures the generated prover so that any branch is discarded once it contains
more than 2%l expressions, where %l is the parameter for the length of the input
expression.

5 Prover generation

The parser for the specification of the user-defined logical language is imple-
mented using the ANTLR parser generator. The specification is parsed and
internally represented as an abstract syntax tree (AST). The internal ANTLR
format for the AST is avoided for performance purposes. The created AST is
passed to the generator class which processes the AST and produces the follow-
ing files: (i) a hierarchy of Java classes representing the user-defined logical lan-
guage, (ii) an object factory class managing the creation of the language classes,
(iii) classes representing substitution and replacement, (iv) an ANTLR gram-
mar file for generating a parser of the user-specified language and the tableau
language, (v) a main class for the prover parsing command line options and ini-
tiating the tableau derivation process, and (vi) JUnit test classes for testing the

MetTeL2: Towards a Prover Generation Platform 5

parsers and testing the correctness of tableau derivations. In the current state,
for testing purposes, most of the classes related to the derivation process are
combined in a separate library. In future versions, more and more classes from
this library and their extensions will migrate to the generated parts. This will
allow to produce faster provers tailored for particular application areas.

The generated Java classes for syntax representation and algorithm for rule
application follow same paradigm as in the old MetTeL system [8].

MetTeL2 implements two general techniques for reducing the search space
in tableau derivations: dynamic backtracking and conflict directed backjump-
ing. Dynamic backtracking avoids repeating the same rule applications in par-
allel branches by keeping track of rule applications common to the branches.
Conflict-directed backjumping derives conflict sets of expressions from a deriva-
tion. This causes branches with the same conflict sets to be discarded. Since
MetTeL2 is a prover generator, dynamic backtracking and backjumping needed
to be represented and implemented in a generic way completely independent of
any specific logical language and tableau rules. Particularly tricky were the com-
putations of conflicting sets for backjumping as these are closely tied to rules of
a tableau calculus. To the best of our knowledge, MetTeL2 is the first system
which implements these techniques in a generic way for any logical syntax and
any calculus.

The provers generated by MetTeL2 come with support for ordered backward
and forward rewriting with respect to equalities appearing in the current branch.
In the language specification equality expressions can be identified with one of
the in-built keywords equality, equivalence or congruence. For example, the
line formula equivalence = formula ’<−>’ formula; in the logic specifi-
cation defines the binary operator <−> and the keyword equivalence signals that
reasoning with this operator should be realised by rewriting. Each Java class
representing a tableau node keeps a rewrite relation which is completed with
respect to all equality expressions appearing in a branch. Once an equality ex-
pression is added within a tableau node, backward rewriting is applied. This
means the rewrite relation is rebuilt with respect to the newly added equality,
and all expressions of the node are rewritten with respect to the rewrite relation.
Forward rewriting (with respect to the current rewrite relation) is applied to all
new expressions added to the branch during the derivation.

The core tableau engine MetTeL2 provides various ways for controlling
derivations. The default search strategy is depth-first left-to-right search which is
implemented as a MettelSimpleLIFOBranchSelectionStrategy request to the
MettelSimpleTableauManager. Also the breadth-first search is implemented as a
MettelSimpleFIFOBranchSelectionStrategy and can be used after a small modifica-
tion in the generated Java code. A user can also implement their own search
strategy and pass it to MettelSimpleTableauManager.

The rule selection strategy can be controlled by specifying priority values
for the rules in the tableau specification. Rules with the same priority values
are iterated sequentially. To ensure fairness all applicable rules within the same
priority group are queried for applications an equal number of times. Preference

6 D. Tishkovsky, R. A. Schmidt, M. Khodadadi

is given to rules from groups with smaller priority values. Again the user could
implement their own rule selection strategy and modify the generated code.

Blocking in tableau derivations can be implemented as variants of the unre-
stricted blocking rule [6]. Consider, for example, the following declarations which
might be part of the language specification for a description (or hybrid) logic.

sort concept, individual;
concept at = ’@’ individual concept | negation = ’~’ concept;
concept equality = ’[’ individual ’=’ individual ’]’;

This defines respectively the sorts concept and individual and two operators
@ and ~. The last line defines an equality operator = on individuals which is
handled by rewriting. The unrestricted blocking rule can now be defined by the
following tableau rule.

@i p @j q / [i = j] $| ~[i = j] $;
The purpose of the two premises here is domain predication so that the variables
i and j are instantiated at rule application (cf. [6]), because symbols that do
not occur in premise positions are not instantiated. In essence the rule causes
individuals occurring in expressions of the form @i p to be systematically set
equal, if this does not lead to a model on the left, then the right branch is
explored. The idea is to find small/finite models. The unrestricted blocking rule
ensures termination of sound and complete tableau calculus in case the specified
logic has the finite model property (cf. [6,7]).

6 Using the generated provers

The generated prover jar-file can be run via the command line as follows.
>java −jar <prover_name>.jar [−i <if>] [−o <of>] [−t <tf>]
<prover_name> is the name of the syntax specification. An input file <if> can
be specified via the −i option. If the option is not specified then input is expected
from standard input. The input file must contain a list of expressions of main sort
(the first specified sort in the syntax specification) separated by space characters.
The prover will output the result to the file <of> if the option −o is given or to
the standard output stream otherwise. With the −t option the user can specify
a file with an alternative definition of a tableau calculus. If the option is omitted
then the calculus specified at generation is used. If no tableau calculus was
specified at generation then a tableau calculus definition must be provided now,
which can be done with the −t option.

The provers return the answers Satisfiable or Unsatisfiable. If the
answer is Unsatisfiable and the prover is able to extract the input expres-
sions needed for deriving the contradiction they are printed. If the answer is
Satisfiable then all the expressions within the completed open branch are
output as a Model.

7 Conclusion

Several test cases have been prepared for the system covering a variety of logics
including Boolean logic, modal logic S4, description logics ALCO and ALBOid[7],

MetTeL2: Towards a Prover Generation Platform 7

a hybrid logic with graded modalities and linear-time temporal logic, with or
without capacity constraints [4]. Sample specifications with unrestricted blocking
are the tableau calculi for S4, ALBOid and linear-time temporal logic (with
constraints). Some of these test cases and the lists example from this paper
(as well as an extended version with a concatenation operator) are available
at [1].

MetTeL2 can be download from [1]. A web-interface for MetTeL2 is pro-
vided, where a user can input their specifications in two syntax aware textareas.
The user can either download the generated prover as a jar-file or directly run
the generated prover in the interface. Using the web-interface consists of three
steps. The first step is defining the syntax of the logical theory. In this step the
user has the chance to select one of several predefined examples. The second step
is defining a tableau calculus. A proper tableau calculus will be automatically
provided if the user has selected one of the predefined logics, which then can be
edited or replaced. In the third step the prover is generated. These test cases are
accessible through the dropdown menu in the first step.

MetTeL2 and MetTeL are small but essential steps to the very ambitious
goal to create a reliable and easy to use prover generation platform which imple-
ments the automated synthesis framework [6]. Our philosophy is slightly different
from systems such as LoTREC [5] and the Key system [3], as we do not aim
to provide a sophisticated meta-programming languages, but to provide easy to
use systems, for the non-technical users, and for the technical user, expandable
systems by allowing them to write their own Java classes and integrate them
using the provided API.

References

1. MetTeL website. http://www.mettel-prover.org.
2. P. Abate and R. Goré. The tableau workbench. Electronic Notes in Theoretical

Computer Science, 231:55–67, 2009.
3. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,

W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software
and System Modeling, 4:32–54, 2005.

4. D. Dixon, B. Konev, R. A. Schmidt, and D. Tishkovsky. A labelled tableau approach
for temporal logic with constraints. Manuscript, submitted for publication, available
at http://www.mettel-prover.org/papers/dkst12.pdf, 2012.

5. O. Gasquet, A. Herzig, D. Longin, and M. Sahade. LoTREC: Logical tableaux
research engineering companion. In Proc. TABLEAUX’05, vol. 3702 of LNCS, pp.
318–322. Springer, 2005.

6. R. A. Schmidt and D. Tishkovsky. Automated synthesis of tableau calculi. Log.
Methods Comput. Sci., 7(2:6):1–32, 2011.

7. R. A. Schmidt and D. Tishkovsky. Using tableau to decide description logics with full
role negation and identity. Manuscript, available at http://www.mettel-prover.

org/papers/ALBOid.pdf, 2011.
8. D. Tishkovsky, R. A. Schmidt, and M. Khodadadi. MetTeL: A tableau prover with

logic-independent inference engine. vol. 6793 of LNCS, pp. 242–247. Springer, 2011.

http://www.mettel-prover.org
http://www.mettel-prover.org/papers/dkst12.pdf
http://www.mettel-prover.org/papers/ALBOid.pdf
http://www.mettel-prover.org/papers/ALBOid.pdf

8 D. Tishkovsky, R. A. Schmidt, M. Khodadadi

Appendix

This appendix is included purely for the benefit of the interested reviewer.

Additional information for using MetTeL2

What happens when none of the options are provided when running MetTeL2?
>java −jar mettel2.jar [−i <sf>] [−t <tf>] [−d <od>] [−p <pf>]
In the case that the −i option is omitted, MetTeL2 waits for a language spec-
ification from standard input. If the −t option is not given, MetTeL2 will not
generate a jar-file of the prover. In this case only Java code for the prover is
generated. This is useful, for example, if the user is going to amend the code
with the aim of tailoring the prover for performance or defining a non-standard
feature, or simply wishes to compile the code by a Java compiler provided by a
different vendor. Whenever −d is not specified the default directory for output of
Java code is the subdirectory output of the current directory. If the −p option
is omitted then the default values are used.

Additional information for running a generated prover

How can a generated prover be run? Considering our list example, the user can
run the prover generated from the syntax and tableau specifications in Sections 2
and 3 as follows.
>java −jar lists.jar
Since the −i option is not specified the prover will wait for input from the
terminal. Suppose {<a (<b L>)> != <a (<b L>)>} is typed (and finished by
pressing the <Ctrl−D>). The output is

Unsatisfiable.
Contradiction: [({(<a (<b L>)>) != (<a (<b L>)>)})]

For the input {<a (<b L0>)> != <a (<b L1>)>} the output is
Satisfiable.
Model: [({(<a (<b L0>)>) != (<a (<b L1>)>)}), ({(<b L0>) !=
(<b L1>)}), ({L0 != L1})]

	MetTeL2: Towards a prover generation platform
	D. Tishkovsky, R. A. Schmidt and M. Khodadadi
	Introduction
	Language specification
	Tableau calculus specification
	Using MetTeL2
	Prover generation
	Using the generated provers
	Conclusion

